Protein sequestration versus Hill-type repression in circadian clock models.
نویسنده
چکیده
Circadian (∼24 h) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional-translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, the author discusses how this new class of models differs dramatically from those based on Hill-type repression in several fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators. Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful modelling of transcriptional repression mechanisms in molecular circadian clocks.
منابع مشابه
Molecular mechanisms that regulate the coupled period of the mammalian circadian clock.
In mammals, most cells in the brain and peripheral tissues generate circadian (∼24 h) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, the individual rhythms of each neuron are synchronized through intercellular signaling. One important feature of SCN is that the synchronized period...
متن کاملThe Importance of Repressor-Activator Balance in Various Models of Repression for Circadian Clocks
To understand protein networks, scientists use mathematical models to simulate the various molecules and their interactions. These mathematical models are differential equations for the concentrations of molecules over time. When constructing a model, it is important to choose a level of abstraction that makes models as simple as possible, without losing their key robustness properties. For osc...
متن کاملInducible and Reversible Clock Gene Expression in Brain Using the tTA System for the Study of Circadian Behavior
The mechanism of circadian oscillations in mammals is cell autonomous and is generated by a set of genes that form a transcriptional autoregulatory feedback loop. While these "clock genes" are well conserved among animals, their specific functions remain to be fully understood and their roles in central versus peripheral circadian oscillators remain to be defined. We utilized the in vivo induci...
متن کاملAccurate timekeeping is controlled by a cycling activator in Arabidopsis
Transcriptional feedback loops are key to circadian clock function in many organisms. Current models of the Arabidopsis circadian network consist of several coupled feedback loops composed almost exclusively of transcriptional repressors. Indeed, a central regulatory mechanism is the repression of evening-phased clock genes via the binding of morning-phased Myb-like repressors to evening elemen...
متن کاملRibosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator.
There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases, and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IET systems biology
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2016